The python library to analyze data.
Install pandas
pip install pandas
import pandas
import pandas as pd
Pandas series
Pandas series are columnsimport pandas as pd
x=[1, 2, 3]
s = pd.Series(x)
print(s)
Data frames
Pandas uses data set as multi dimensional arrays like tables.
import pandas as pd
x={
"person":['Rama', 'Krishna'],
"age": [20, 30]
}
df = pd.DataFrame(x)
print( df )
Analysis data frames
import pandas as pd
data={
"day":["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"],
"wind_speed":[30, 40, 50, 25, 60, 90, 10],
"temprature":[20, 15, 10, 25, 8, 6, 30],
"event":['A', 'B', 'C', 'D', 'E', 'F', 'G']
}
df=pd.DataFrame(data)
print(df)
Shape of data frame
print(df.shape)
Return rows and columns from data frame
rows, cols = df.shape
print(rows)
Fetch top records from data frame
print(df.head())
Fetch only top 2 records from data frame
print(df.head(2))
Fetch bottom top records from data frame
print(df.tail())
Fetch 2 records from bottom
print(df.tail(2))
Slicing data frame records
print(df[2: 5])
Fetch columns from data frame
print(df.columns)
Fetch single column
print(df.day)
Fetch multiple columns details
print(df[['day', 'event']])
Return maximum value of column
print(df['temprature'].max())
Return minimum value of column
print(df['temprature'].min())
Return average of column values
print(df['temprature'].mean())
Generate descriptive statistics
print(df.describe())
Fetch all records that has tempratur greater than 10
print(df[df.temprature>10])